Probabilistic Models for Relational Data
نویسندگان
چکیده
We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entity-relationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER model is closely related to the plate model and the probabilistic relational model (PRM), existing models for relational data. The DAPER model is more expressive than either existing model, and also helps to demonstrate their similarity. In addition to describing the new language, we discuss important facets of modeling relational data, including the use of restricted relationships, self relationships, and probabilistic relationships. Many examples are provided.
منابع مشابه
On the Connections between Relational and XML Probabilistic Data Models
A number of uncertain data models have been proposed, based on the notion of compact representations of probability distributions over possible worlds. In probabilistic relational models, tuples are annotated with probabilities or formulae over Boolean random variables. In probabilistic XML models, XML trees are augmented with nodes that specify probability distributions over their children. Bo...
متن کاملMetadata Enrichment for Automatic Data Entry Based on Relational Data Models
The idea of automatic generation of data entry forms based on data relational models is a common and known idea that has been discussed day by day more than before according to the popularity of agile methods in software development accompanying development of programming tools. One of the requirements of the automation methods, whether in commercial products or the relevant research projects, ...
متن کاملMulti-Relational Data Mining using Probabilistic Models Research Summary
We are often faced with the challenge of mining data represented in relational form. Unfortunately, most statistical learning methods work only with “flat” data representations. Thus, to apply these methods, we are forced to convert the data into a flat form, thereby not only losing its compact representation and structure but also potentially introducing statistical skew. These drawbacks sever...
متن کاملProbabilistic Entity-Relationship Models, PRMs, and Plate Models
We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entity-relationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entity-relationship (DAPER) model. The DAPER model is closely relate...
متن کاملLearning Probabilistic Models of Relational Structure
Most real-world data is stored in relational form. In contrast, most statistical learning methods work with “flat” data representations, forcing us to convert our data into a form that loses much of the relational structure. The recently introduced framework of probabilistic relational models (PRMs) allows us to represent probabilistic models over multiple entities that utilize the relations be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004